Royal Jelly-Mediated Prolongevity and Stress Resistance in Caenorhabditis elegans Is Possibly Modulated by the Interplays of DAF-16, SIR-2.1, HCF-1, and 14-3-3 Proteins.
نویسندگان
چکیده
Recent studies suggest that royal jelly (RJ) and its related substances may have antiaging properties. However, the molecular mechanisms underlying the beneficial effects remain elusive. We report that the effects of RJ and enzyme-treated RJ (eRJ) on life span and health span in Caenorhabditis elegans (C elegans) are modulated by the sophisticated interplays of DAF-16, SIR-2.1, HCF-1, and 14-3-3 proteins. Dietary supplementation with RJ or eRJ increased C. elegans life span in a dose-dependent manner. The RJ and eRJ consumption increased the tolerance of C elegans to oxidative stress, ultraviolet irradiation, and heat shock stress. Our genetic analyses showed that RJ/eRJ-mediated life-span extension requires insulin/IGF-1 signaling and the activities of DAF-16, SIR-2.1, HCF-1, and FTT-2, a 14-3-3 protein. Earlier studies reported that DAF-16/FOXO, SIR-2.1/SIRT1, FTT-2, and HCF-1 have extensive interplays in worms and mammals. Our present findings suggest that RJ/eRJ-mediated promotion of longevity and stress resistance in C elegans is dependent on these conserved interplays. From an evolutionary point of view, this study not only provides new insights into the molecular mechanisms of RJ's action on health span promotion in C elegans, but also has imperative implications in using RJ/eRJ as nutraceuticals to delay aging and age-related disorders.
منابع مشابه
C. elegans SIR-2.1 Interacts with 14-3-3 Proteins to Activate DAF-16 and Extend Life Span
The longevity of Caenorhabditis elegans is promoted by extra copies of the sir-2.1 gene in a manner dependent on the forkhead transcription factor DAF-16. We identify two C. elegans 14-3-3 proteins as SIR-2.1 binding partners and show that 14-3-3 genes are required for the life-span extension conferred by extra copies of sir-2.1. 14-3-3 proteins are also required for SIR-2.1-induced transcripti...
متن کاملThe Evolutionarily Conserved Longevity Determinants HCF-1 and SIR-2.1/SIRT1 Collaborate to Regulate DAF-16/FOXO
The conserved DAF-16/FOXO transcription factors and SIR-2.1/SIRT1 deacetylases are critical for diverse biological processes, particularly longevity and stress response; and complex regulation of DAF-16/FOXO by SIR-2.1/SIRT1 is central to appropriate biological outcomes. Caenorhabditis elegans Host Cell Factor 1 (HCF-1) is a longevity determinant previously shown to act as a co-repressor of DAF...
متن کاملCaenorhabditis elegans HCF-1 Functions in Longevity Maintenance as a DAF-16 Regulator
The transcription factor DAF-16/forkhead box O (FOXO) is a critical longevity determinant in diverse organisms, however the molecular basis of how its transcriptional activity is regulated remains largely unknown. We report that the Caenorhabditis elegans homolog of host cell factor 1 (HCF-1) represents a new longevity modulator and functions as a negative regulator of DAF-16. In C. elegans, hc...
متن کاملC. elegans SIRT6/7 Homolog SIR-2.4 Promotes DAF-16 Relocalization and Function during Stress
FoxO transcription factors and sirtuin family deacetylases regulate diverse biological processes, including stress responses and longevity. Here we show that the Caenorhabditis elegans sirtuin SIR-2.4--homolog of mammalian SIRT6 and SIRT7 proteins--promotes DAF-16-dependent transcription and stress-induced DAF-16 nuclear localization. SIR-2.4 is required for resistance to multiple stressors: he...
متن کاملThe 14-3-3 protein FTT-2 regulates DAF-16 in Caenorhabditis elegans.
The Caenorhabditis elegans daf-2/insulin-like signaling pathway is critical for regulating development, longevity, metabolism and stress resistance. We identified the 14-3-3 protein FTT-2 to be a new regulatory component of this pathway. We found that RNAi knock down of ftt-2 specifically enhanced the daf-2-mediated dauer formation phenotype. Furthermore, ftt-2 knock down caused the nuclear acc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journals of gerontology. Series A, Biological sciences and medical sciences
دوره 70 7 شماره
صفحات -
تاریخ انتشار 2015